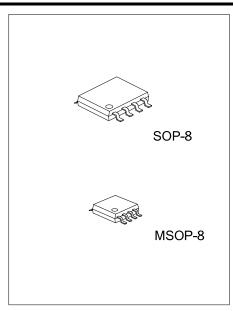


UNISONIC TECHNOLOGIES CO., LTD

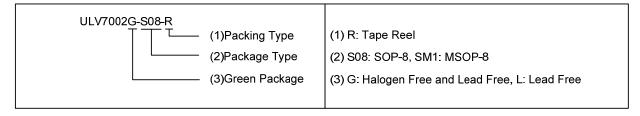

ULV7002 CMOS IC

ULTRALOW POWER, RAIL-TO-RAIL INPUT/OUTPUT **DUAL CMOS OPERATIONAL AMPLIFIER**

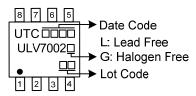
DESCRIPTION

The UTC ULV7002 is dual ultralow power operational amplifiers designed to extend battery life and performance for portable applications. The operating voltage range of 1.5V to 5.5V and supply current of 0.15µA/ch (dual) typical, with stable over temperature and input voltage change make them deal for micropower oxygen sensors, gas sensors and remote sensor applications.

In addition to the ultralow power and low operating voltage, rail-to-rail input and output, input offset voltage of 4.0mV, make the UTC ULV7002 series ideal when requiring excellent performance in battery powered applications.

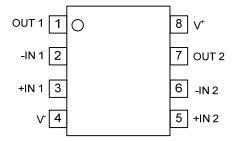


FEATURES


- * Supply Voltage:1.5~5.5V
- * Supply Current/Amplifier: 0.15µA/ch typ
- * Input Offset Voltage:4.0mV (Max)
- * Rail-to-Rail Input/Output
- * Slew Rate: 1.3V/ms (Typ.)

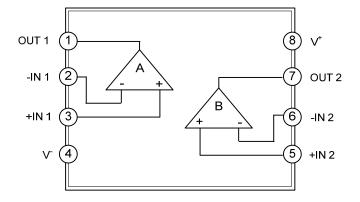
ORDERING INFORMATION

Ordering Number		Dealtage	Dealine	
Lead Free	Halogen Free	Package	Packing	
ULV7002L-S08-R	ULV7002G-S08-R	SOP-8	Tape Reel	
ULV7002L-SM1-R	ULV7002G-SM1-R	MSOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 6 ULV7002 mos ic


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT 1	Output of 1 AMP
2	-IN 1	Inverting input of 1 AMP
3	+IN 1	Non-inverting input of 1 AMP
4	V-	Negative power supply
5	+IN 2	Non-inverting input of 2 AMP
6	-IN 2	Inverting input of 2 AMP
7	OUT 2	Output of 2 AMP
8	V ⁺	Positive power supply

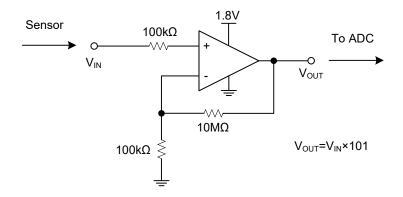
■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

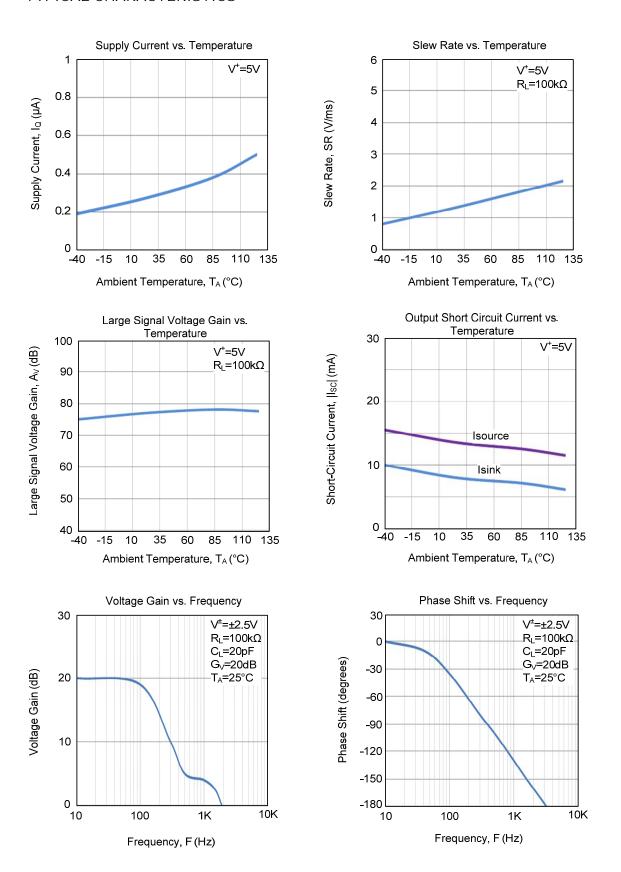
PARAMETER	SYMBOL RATINGS		UNIT
Supply Voltage	V+ - V-	7	V
Differential Input Voltage (Note 1)	V_{ID}	±7 (Note 2)	V
Input Voltage	V_{IN}	V ⁻ - 0.3 ~ V ⁺ +0.3	V
Power Dissipation (Note 3)	P _D	500	mW
Storage Temperature Range	T _{STG}	-55 ~ +125	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Differential voltage is the voltage difference between +INPUT and -INPUT.
 - 3. For supply voltage less than +7V, the absolute maximum rating is equal to the supply voltage.
 - 4. Power dissipation is the power that can be consumed by the IC at T_A =25°C, and is the typical measured value based on JEDEC condition. When using the IC over T_A =25°C subtract the value $[mW/^{\circ}C]$ = $P_D/$ ($T_{STG}(Max.)$ -25) per temperature.
 - 2-layer: EIA/JEDEC STANDARD Test board (76.2x114.3x1.6mm, 2layers, FR-4) mounting.

■ RECOMMENDED OPERATING CONDITION (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V+ - V-		1.5		5.5	V
Operating Temperature Range	Topr		-40		+125	°C

ELECTRICAL CHARACTERISTICS


 $(V^{+}=1.8\sim5V, V^{-}=0V, V_{CM}=V^{+}/2 V, R_{L}=100k\Omega \text{ to } V^{+}/2V, T_{A}=25^{\circ}C, \text{ unless otherwise specified})$

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Current/Amplifier	lα				0.3	0.66	uA
Power Supply Rejection Ratio	PSRR	1.5V ≤ V ⁺ ≤ 5.5V, V _{CM} =0V		55	75		dB
Input Offset Voltage	Vos	V _{CM} =0V			8.0	4.0	mV
Input Bias Current	lΒ				1		pА
Input Offset Current	los				1		pА
Common-Mode Voltage Range	V_{CM}			0		V ⁺	V
Common Mode Rejection Ratio	CMRR	$0V \le V_{CM} \le V^+$		55	80		dB
Large Signal Voltage Gain	Av	R _L =100kΩ,V _O =0.5V~ V ⁺ -0.5V		70	78		dB
Output Voltage	Vo	R_L =100k Ω to V ⁺	V_{OH}	V+-0.2	V+-0.05		V
			V_{OL}		0.1	0.2	V
Slew Rate	SR	G _V =0dB, C _L =20pF, V _{IN} =1Vpp			1.3		V/ms
Gain-Bandwidth Product	GBW				1.8		kHz
Phase Margin	Φ_{M}				55		Deg.
Gain Margin	G_M				7	·-	dB
Input-Referred Voltage Noise	e _n	f=100Hz			800		nV/ √Hz

■ TYPICAL APPLICATION CIRCUIT

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.